Table 1-Continued | Test No.
Polybutadiene Derivative
Vinyl Compound | | 6
f
Ethyleneglycol dimethacrylate
10% | 7
g | Reference Example 1
A-7
Ethyleneglycol dimethacrylate
20% | | |--|-----------------------------|--|------------------------------------|--|--| | Results of
Test | Appearance Shore Hardness-D | light yellow,
transparent
87 | light yellow,
transparent
76 | light yellow,
transparent
75 | | | | Bending
Strength* | 760 | 720 | 420 | | ^{*} Note: Measurement of bending strength was based on ASTM D-790. Table 2 | Test No.
Polybutadiene Derivative | | | 8
a | 9
b | Reference Example 2
A-8 | |---|--|-------------------------|--|--|--| | Conditions
of
Irradiation | Voltage
Current
Dose Rate
Linear Velo
Distance be
Radiation
and Expose
Matter | tween
Source | 2.0 MeV
1 mA
0.1 Mrad/sec
4.5 cm/sec
about 20 cm | 2.0 MeV
2 mA
0.2 Mrad/sec
4.5 cm/sec
about 20 cm | 2.0 MeV
5 mA
0.5 Mrad/sec
4.5 cm/sec
about 20 cm | | | Total Radiation Dose | | 3 Mrad | 6 Mrad | 10 Mrad | | Film Thickness Pencil Hardness Bending Strength | | 20μ
3Η
0 | 20μ
3H
0 | 20μ
2Β
Χ | | | Results of
Test | (2 mmφ) | Front | 50 cm | 50 cm | 30 cm | | | Du Pont
Shock
Resistance | Side
Reverse
Side | 50 cm | 50 cm | 10 cm | Note 1. Test Method Pencil Hardness: TIS K-5651, used Mitsubishi UNI Pencil Bending Strength: TIS-5400 Du Pont Shock Resistance: Marks for Judgement 0 Nothing unusual in painted film X Cracking and/or Peering in Painted Film Table 3 | Test No. Polybutadiene Derivative Vinyl Compound | | 10
a
Styrene 20%
Acrylic Acid 2% | Reference Example 3
A-7
Styrene 20%
Acrylic Acid 20% | |--|---|--|---| | Conditions of Irradiation | Voltage Current Dose Rate Linear Velocity Distance between Radiation Source and Exposured Matter Total Radiation 3 Mrad | 2.0 MeV
1 mA
0.1 Mrad/sec
4.5 cm/sec
about 20 cm | MeV
5 mA
0.5 Mrad/sec
4.5 cm/sec
about 20 cm | | Tensile
Shearing
Strength | Just After Curing
After Heating at
180°C for 30 hours | 120 kg/cm ²
105 | 76 kg/cm²
58 | ## What we claim is: 1. A process for preparing a polybutadiene derivative curable by means of an ionizing radiation, which comprises reacting a polymeric butadiene selected from a 60 butadiene homopolymer, a butadiene copolymer and a mixture thereof, said polymeric butadiene having a number-average molecular weight 200-100,000 and containing a functional group having an active hydrogen and not less than about 30 percent 65 of the butadiene units in said polymeric butadiene being 1,2-bond, with an isocyanate compound having an unsubstituted or substituted vinyl group, in the proportion of said isocyanate compound providing not less than about 0.5 equivalent of the isocyanate group per said polymeric butadiene providing 1 equivalent of the active hydrogen. 2. A novel polybutadiene derivative curable by means of an ionizing radiation, the structure of which is represented by a reaction product of a polymeric butadiene selected from a butadiene homopolymer, a butadiene copolymer and a mixture thereof, said polymeric butadiene having a number-average molecular weight of about 200-100,000 and containing a functional group having an active hydrogen and not less than about 30 percent of the butadiene units in said polymeric butadiene being 1,2-bond, with an isocya-